產(chǎn)品名稱 | MC3T3-E1 Subclone 24 |
---|---|
商品貨號 | B165100 |
Organism | Mus musculus, mouse |
Tissue | bone, calvaria |
Cell Type | preosteoblast |
Product Format | frozen |
Morphology | fibroblast |
Culture Properties | adherent |
Biosafety Level | 1
Biosafety classification is based on U.S. Public Health Service Guidelines, it is the responsibility of the customer to ensure that their facilities comply with biosafety regulations for their own country. |
Age | newborn |
Strain | C57BL/6 |
Applications | These cell lines are good models for studying in vitro osteoblast differentiation, particularly ECM signaling. They have behavior similar to primary calvarial osteoblasts.
|
Storage Conditions | liquid nitrogen vapor phase |
Derivation | A series of subclones were isolated from the cloned but phenotypically heterogeneous MC3T3-E1 cell line. The subclones were selected for high or low osteoblast differentiation and mineralization after growth in medium containing ascorbic acid.
|
Genes Expressed | collagen
RefWang D, et al. Isolation and characterization of MC3T3-E1 preosteoblast subclones with distinct in vitro and in vivo differentiation/mineralization potential. J. Bone Miner. Res. 14: 893-903, 1999. PubMed: 10352097 |
Cellular Products | collagen
RefWang D, et al. Isolation and characterization of MC3T3-E1 preosteoblast subclones with distinct in vitro and in vivo differentiation/mineralization potential. J. Bone Miner. Res. 14: 893-903, 1999. PubMed: 10352097 |
Tumorigenic | Yes |
Effects | Yes, in immunosuppressed mice (forms bone-like ossicles) |
Comments | The MC3T3 Subclone 24 (ATCC CRL-2595) and the MC3T3 Subclone 30 (ATCC CRL-2596) lines exhibit poor osteoblast differentiation after growth in ascorbic acid. A series of subclones were isolated from the cloned but phenotypically heterogeneous MC3T3-E1 cell line. The subclones were selected for high or low osteoblast differentiation and mineralization after growth in medium containing ascorbic acid. The MC3T3-E1 Subclone 4 (ATCC CRL-2593) and the MC3T3 Subclone 14 (ATCC CRL-2594) lines exhibit high levels of osteoblast differentiation after growth in ascorbic acid and 3 to 4 mM inorganic phosphate. [51540] They form a well mineralized extracellular matrix (ECM) after 10 days. The MC3T3 Subclone 24 (ATCC CRL-2595) and the MC3T3 Subclone 30 (ATCC CRL-2596) lines exhibit poor osteoblast differentiation after growth in ascorbic acid. They do not form ECM. They can be used as negative controls for Subclones 4 and 14. RefWang D, et al. Isolation and characterization of MC3T3-E1 preosteoblast subclones with distinct in vitro and in vivo differentiation/mineralization potential. J. Bone Miner. Res. 14: 893-903, 1999. PubMed: 10352097 Mineralizing subclones selectively express mRNAs for the osteoblast markers, bone sialoprotein (BSP), osteocalcin (OCN), and the parathyroid hormone (PTH)/parathyroid hormone-related protein (PTHrP) receptor. RefWang D, et al. Isolation and characterization of MC3T3-E1 preosteoblast subclones with distinct in vitro and in vivo differentiation/mineralization potential. J. Bone Miner. Res. 14: 893-903, 1999. PubMed: 10352097 Subclones with both high and low differentiation potential produce similar amounts of collagen in culture and express comparable basal levels of mRNA encoding Osf2/Cbfa1, an osteoblast-related transcription factor. RefWang D, et al. Isolation and characterization of MC3T3-E1 preosteoblast subclones with distinct in vitro and in vivo differentiation/mineralization potential. J. Bone Miner. Res. 14: 893-903, 1999. PubMed: 10352097 After implantation into immunodeficient mice, highly differentiating subclones form bone-like ossicles resembling woven bone, while poorly differentiating cells only produce fibrous tissue. RefWang D, et al. Isolation and characterization of MC3T3-E1 preosteoblast subclones with distinct in vitro and in vivo differentiation/mineralization potential. J. Bone Miner. Res. 14: 893-903, 1999. PubMed: 10352097
|
Complete Growth Medium | The base medium for this cell line is Alpha Minimum Essential Medium with ribonucleosides, deoxyribonucleosides, 2 mM L-glutamine and 1 mM sodium pyruvate, but without ascorbic acid (GIBCO, Custom Product, Catalog No. A1049001). To make the complete growth medium, add the following components to the base medium: fetal bovine serum to a final concentration of 10%.
|
Subculturing | Volumes used in this protocol are for 75 cm2 flask; proportionally reduce or increase amount of dissociation medium for culture vessels of other sizes.
Subcultivation Ratio: 1:4 to 1:6 Note: For more information on enzymatic dissociation and subculturing of cell lines consult Chapter 10 in Culture of Animal Cells, a Manual of Basic Technique by R. Ian Freshney, 3rd edition, published by Alan R. Liss, N.Y., 1994. |
Cryopreservation | Complete growth medium 95%; DMSO, 5%. Cell culture tested DMSO is available as ATCC Catalog No. 4-X.
|
Culture Conditions | Temperature: 37°C |
Name of Depositor | RT Franceschi |
Deposited As | mouse |
References | Wang D, et al. Isolation and characterization of MC3T3-E1 preosteoblast subclones with distinct in vitro and in vivo differentiation/mineralization potential. J. Bone Miner. Res. 14: 893-903, 1999. PubMed: 10352097 |
梅經(jīng)理 | 17280875617 | 1438578920 |
胡經(jīng)理 | 13345964880 | 2438244627 |
周經(jīng)理 | 17757487661 | 1296385441 |
于經(jīng)理 | 18067160830 | 2088210172 |
沈經(jīng)理 | 19548299266 | 2662369050 |
李經(jīng)理 | 13626845108 | 972239479 |