The MC3T3-E1 Subclone 4 (ATCC CRL-2593) and the MC3T3 Subclone 14 (ATCC CRL-2594) lines exhibit high levels of osteoblast differentiation after growth in ascorbic acid and 3 to 4 mM inorganic phosphate. They form a well mineralized extracellular matrix (ECM) after 10 days. RefWang D, et al. Isolation and characterization of MC3T3-E1 preosteoblast subclones with distinct in vitro and in vivo differentiation/mineralization potential. J. Bone Miner. Res. 14: 893-903, 1999. PubMed: 10352097
The MC3T3 Subclone 24 (ATCC CRL-2595) and the MC3T3 Subclone 30 (ATCC CRL-2596) lines exhibit poor osteoblast differentiation after growth in ascorbic acid. They do not form ECM. They can be used as negative controls for Subclones 4 and 14. RefWang D, et al. Isolation and characterization of MC3T3-E1 preosteoblast subclones with distinct in vitro and in vivo differentiation/mineralization potential. J. Bone Miner. Res. 14: 893-903, 1999. PubMed: 10352097
Mineralizing subclones selectively express mRNAs for the osteoblast markers, bone sialoprotein (BSP), osteocalcin (OCN), and the parathyroid hormone (PTH)/parathyroid hormone-related protein (PTHrP) receptor. Subclones with both high and low differentiation potential produce similar amounts of collagen in culture and express comparable basal levels of mRNA encoding Osf2/Cbfa1, an osteoblast-related transcription factor. RefWang D, et al. Isolation and characterization of MC3T3-E1 preosteoblast subclones with distinct in vitro and in vivo differentiation/mineralization potential. J. Bone Miner. Res. 14: 893-903, 1999. PubMed: 10352097
After implantation into immunodeficient mice, highly differentiating subclones form bone-like ossicles resembling woven bone, while poorly differentiating cells only produce fibrous tissue. RefWang D, et al. Isolation and characterization of MC3T3-E1 preosteoblast subclones with distinct in vitro and in vivo differentiation/mineralization potential. J. Bone Miner. Res. 14: 893-903, 1999. PubMed: 10352097
These cell lines are good models for studying in vitro osteoblast differentiation, particularly ECM signaling. They have behavior similar to primary calvarial osteoblasts.
|