国产黄片大全在线播放_多毛中国农村熟女吟呻对白_欧洲乱码在线播放_亚洲五月婷婷久久综合色

熱門搜索:A549    293T 金黃色葡萄球菌 大腸桿菌 AKK菌
購物車 1 種商品 - 共0元
當前位置: 首頁 > ATCC代理 > M4A4 LM3-2 GFP
最近瀏覽歷史
聯(lián)系我們
  • 0574-87157013
  • mingzhoubio@163.com
  • 浙江省寧波市鎮(zhèn)海區(qū)莊市街道興莊路9號
  • 創(chuàng)e慧谷42號樓B幢401室
M4A4 LM3-2 GFP
M4A4 LM3-2 GFP
規(guī)格:
貨期:
編號:B221039
品牌:Mingzhoubio

標準菌株
定量菌液
DNA
RNA

規(guī)格:
凍干粉
斜面
甘油
平板


產品名稱 M4A4 LM3-2 GFP
商品貨號 B221039
Organism Homo sapiens, human
Cell Type melanocyte, Melanoma
Product Format frozen
Morphology epithelial
Culture Properties adherent
Biosafety Level 2  [Cells contain MoMuLV viral DNA sequences]

Biosafety classification is based on U.S. Public Health Service Guidelines, it is the responsibility of the customer to ensure that their facilities comply with biosafety regulations for their own country.

Disease cancer
Age 31
Gender female
Ethnicity Caucasian
Applications Ideal for metastatic studies
Storage Conditions liquid nitrogen vapor phase
Images
Derivation
The M4A4 LM3-2 GFP was derived from a second generating lung metastasis after inoculation of M4A4 GFP cells in a nude mouse mammary gland.
Clinical Data
female
Caucasian
31
Comments
The M4A4 LM3-2 GFP (CRL-2916?) was derived from a second generating lung metastasis after inoculation of M4A4 GFP cells in a nude mouse mammary gland. M4A4 LM3-4 CL 16 GFP (ATCC CRL-2917?) cell line was established from a third generation lung metastasis. The M4A4 GFP (ATCC CRL-2915?) was developed by the transduction of the GFP gene into M4A4 (CRL-2914?) cell line. The parental cell lines  ATCC CRL-2914? (M4A4) and ATCC CRL-2918? (NM2C5) were derived from the human breast cancer cell line, MDA.MB-435. M4A4 is highly metastatic in immuno-deprived mice, while NM2C5 is weakly or virtually non-metastatic. These well characterized, tumorigenic human isogenic cell lines have dramatically opposite metastatic phenotypes and are ideal for metastatic studies.
Note: Recent studies have generated questions about the origin of the parent cell line, MDA-MB-435. Gene expression analysis of the cells produced microarrays in which MDA-MB-435 clustered with cell lines of melanoma origin instead of breast. Additional studies have since corroborated a melanocyte origin of MDA-MB-435, to which ATCC has responded by pursuing its own investigation into the identity of this cell line. The cell line to which MDA-MB-435 is reported to have been cross-contaminated with is the M14 melanoma line.
Complete Growth Medium The base medium for this cell line is ATCC-formulated Dulbecco's Modified Eagle's Medium, Catalog No. 30-2002. To make the complete growth medium, add the following components to the base medium: fetal bovine serum to a final concentration of 10%.
Subculturing
Protocol: To avoid phenotypic drift it is recommended to make frozen aliquots of the cells and use each aliquot for only 10 passages.

Note: If more than 5-10% non-fluorescing cells reappear at any time it is recommended to use 600 micrograms/mL G418 for 2-4 weeks to kill off the revertants. Resistance to higher concentrations of G418 depends on the number of copies of the neo resistance gene that the cell has incorporated which is not uniform for the whole population.

Volumes used in this protocol are for 75 sq cm flasks; proportionally reduce or increase amount of dissociation medium for culture vessels of other sizes.
  1. Remove and discard culture medium.
  2. Briefly rinse the cell layer with Ca++/Mg++ free Dulbecco's phosphate-buffered saline (D-PBS) or 0.25% (w/v) Trypsin - 0.53 mM EDTA solution to remove all traces of serum which contains trypsin inhibitor.
  3. Add 1.0 to 2.0 ml of Trypsin-EDTA solution to flask and observe cells under an inverted microscope until cell layer is dispersed (usually within 5 to 15 minutes).
    Note: To avoid clumping do not agitate the cells by hitting or shaking the flask while waiting for the cells to detach. Cells that are difficult to detach may be placed at 37C to facilitate dispersal.
  4. Add 6.0 to 8.0 ml of complete growth medium and aspirate cells by gently pipetting.
  5. Transfer cell suspension to a centrifuge tube and spin at approximately 125 X g for 5 to 10 minutes. Discard supernatant.
  6. Resuspend the cell pellet in fresh growth medium. Add appropriate aliquots of the cell suspension to new culture vessels. An inoculum of 3 X 10(3) to 5 X 10(3) viable cells/sq. cm is recommended.
  7. Incubate cultures at 37C. We recommend that you maintain cultures at a cell concentration between 2 X 10(5) and 3 X 10(5) cells/sq. cm.
Subcultivation Ratio: A subcultivation ratio of 1:20 to 1:40 is recommended
Medium Renewal: 2 to 3 times a week
Cryopreservation
Freeze medium: Complete growth medium, 95%; DMSO, 5%
Storage temperature: liquid nitrogen vapor phase
Culture Conditions
Atmosphere: 5% CO2 in air recommended
Temperature: 37.0°C
STR Profile
Amelogenin: X
CSF1PO: 11
D13S317: 12
D16S539: 13
D5S818: 11,12
D7S820: 8,10
THO1: 6,7
TPOX: 8,11
vWA: 16,18
Population Doubling Time about 31 hours
Name of Depositor D Tarin
Year of Origin August, 2001
References

Ross DT, et al. Systematic variation in gene expression patterns in human cancer cell lines. Nature Genetics 24: 227-235, 2000. PubMed: 10700174

Ellison G, et al. Further evidence to support the melanocytic origin of MDA-MB-435. Mol. Pathol. 55: 294-299, 2002. PubMed: 12354931

Bao L, et al. Correlation of VLA-4 integrin expression with metastatic potential in various human tumour cell lines. Differentiation 52: 239-246, 1993. PubMed: 7683291

Urquidi V, et al. Contrasting expression of thrombospondin-1 and osteopontin correlates with absence or presence of metastatic phenotype in an isogenic model of spontaneous human breast cancer metastasis. Clin. Cancer Res. 8: 61-74, 2003. PubMed: 11801541

Goodison S, et al. Prolonged dormancy and site-specific growth potential of cancer cells spontaneously disseminated from nonmetastatic breast tumors as revealed by labeling with green fluorescent protein. Clin. Cancer Res. 9: 3808-3814, 2003. PubMed: 14506175

Montel V, et al. Expression profiling of primary tumors and matched lymphatic and lung metastases in a xenogeneic breast cancer model. Am. J. Pathol. 166: 1565-1579, 2005. PubMed: 15855655

Suzuki M, et al. Dormant cancer cells retrieved from metastasis-free organs regain tumorigenic and metastatic potency. Am. J. Pathol. 169: 673-681, 2006. PubMed: 16877365

Montel V, et al. Tumor-stromal interactions reciprocally modulate gene expression patterns during carcinogenesis and metastasis. Int. J. Cancer 119: 251-263, 2006. PubMed: 16482564

Goodison S, et al. Molecular cytogenetic analysis of a human breast metastasis model: identification of phenotype-specific chromosomal rearrangements. Cancer Genet. Cytogenet. 156: 37-48, 2005. PubMed: 15588854

Hayashi K, et al. Differential effects of retinoic acid on the growth of isogenic metastatic and non-metastatic breast cancer cell lines and their association with distinct expression of retinoic acid receptor beta isoforms 2 and 4. Int. J. Oncol. 22: 623-629, 2003. PubMed: 12579317

Tarin DTumor metastasisIn: Tarin DOxford Textbook of PathologyOxford, United KingdomOxford University Press607-663, 1992

Sellappan S, et al. Lineage infidelity of MDA-MB-435 cells: expression of melanocyte proteins in a breast cancer cell line. Cancer Res. 64: 3479-3485, 2004. PubMed: 15150101.

Rae JM, et al. Common origins of MDA-MB-435 cells from various sources with those shown to have melanoma properties. Clin. Exp. Metastasis 21: 543-552, 2004. PubMed: 15679052.

Rae JM, et al., MDA-MB-435 cells are derived from M14 Melanoma cells - a loss for breast cancer, but a boon for melanoma research. Breast Cancer Res. Treat. 104:13-19, 2007. PubMed: 17004106.

梅經理 17280875617 1438578920
胡經理 13345964880 2438244627
周經理 17757487661 1296385441
于經理 18067160830 2088210172
沈經理 19548299266 2662369050
李經理 13626845108 972239479